Inversmatriks ini juga ada beberapa macam mulai dari invers matriks 2×2, 3×3, 4×4, 5×5 dan Invers matrik ab. Dan untuk cara menghitungnya pun berbeda-beda, untuk menghitung invers matrik 2×2 terbilang lebih mudah dibandingkan lainya maka teman-teman perlu melihat penjelasanya dibawah ini. Pada tahapan yang terakhir ini adalah akhirMatriks merupakan suatu susunan bilangan dimana tersusun dalam kolom dan baris. Dalam kajian ilmu matematika, rumus mengenai matriks tidaklah sedikit. Sebut saja penjumlahan matriks, pengurangan matriks, perkalian matriks, invers matriks, dan masih banyak lainnya. Secara konsep, invers suatu matriks atau yang juga dikenal dengan sebutan invers perkalian hampir sama dengan kebalikan bilangan. Suatu matriks bisa dibalik jika matriks itu ialah matriks persegi. Tipe matriks yang satu ini merupakan matriks yang berukuran n x n. Selain matriks persegi, tipe matriks yang bisa dibalik lainnya ialah matriks non-singular. Tipe matriks non-singular ini berupa determinan \neq 0. Perlu untuk anda ketahui, tidak semua matriks mempunyai invers. Invers matriks bisa didefinisikan dimana jika A merupakan suatu matriks kuadrat, maka anda bisa mencari matriks B dengan AB = BA = I. A dikatakan bisa dibalik invertible dan B disebut dengan invers dari A. Setelah anda mengetahui pengertiannya, maka selanjutnya anda harus mengerti bagaimana cara memecahkan soal terkait invers matriks. Trik Jitu Mencari Invers Matriks Sebenarnya ada banyak cara yang bisa anda lakukan untuk memecahkan soal mengenai invers matriks. Untuk lebih jelasnya, anda simak saja beberapa trik jitu mencari invers matriks berikut ini. Mencari Invers dari Matriks 2×2 Bagi anda yang ingin mencari invers dari matriks 2×2, pastikan dulu bahwa matriks anda ialah matriks persegi. Setelah itu, periksa jika matriks anda ialah 2×2. Kemudian ketahui rumus anda dan hitung kofaktornya. Biarkan tiap bagian dari matriks menjadi unsur matriks pada baris ke-m serta kolom ke-n. Kofaktor tiap bagiannya bisa menjadi -1m+n det sisa. Dimana det sisa adalah determinan dari matriks yang dibentuk dengan cara menghilangkan baris ke-m serta kolom ke-n, tempat unsur tiap bagiannya. Langkah selanjutnya, anda perlu mencari determinan matriks. Determinan merupakan bilangan tertentu yang bisa dihitung dari matriks persegi apapun. Pada umumnya, determinan dinotasikan dengan garis vertikal. Hal ini sama seperti nilai mutlak. Anda bisa jumlahkan semua kofaktor dari semua unsur yang ada pada baris pertama dalam matriks. Kemudian periksa jika determinannya memiliki nilai 0. Apabila determinannya bernilai 0, maka tak ada invers matriknya. Sebenarnya invers dari matriks 2×2 sangat sederhana. Anda hanya perlu menukar posisi a dan d, letakkan tanda negatif di bagian depan b dan c, serta membagi semua unsur dengan determinannya. Mencari Invers dari Matriks Persegi yang Lebih Besar dari 2×2 Sebenarnya cara mencari invers dari matriks persegi yang lebih besar dari 2×2 hampir sama dengan cara di atas, hanya saja jalannya lebih rumit. Pertama, anda harus memastikan bahwa matriks anda ialah matriks persegi. Setelah itu, periksa apabila matriks anda ialah 2×2. Selanjutnya, anda hitung semua kofaktor dari matriks persegi anda dan cari determinan matriks. Jika sudah, anda bisa periksa determinannya bernilai 0. Kemudian susun matriks kofaktornya dan cari transpose dari baris dan kolom anda. Setelah itu, bagi transpose matriks dengan determinannya. Perlu diketahui, matriks identitas n x n adalah matriks yang mempunyai unsur-unsur sama dengan nilai 0. Hal ini terkecuali unsur diagonal yang sama dengan nilai 1. Perlu diingat bahwa invers matriks 2×2 biasa hanya dapat dihitung apabila ab – cd tak sama dengan 0. Keabsahan invers matriks bisa diperiksa dengan hubungan antara matriks dan inversnya AxA-1. Dimana 1 adalah matriks identitas.
O conceito de matriz inversa se aproxima bastante do conceito de inverso de um número. Vamos lembrar que o inverso de um número n é o número n-1, em que o produto entre os dois é igual ao elemento neutro da multiplicação, ou seja, o número 1. Já a inversa da matriz M é a matriz M-1, em que o produto M M-1 é igual à matriz identidade In, que nada mais é do que o elemento neutro da multiplicação de matrizes. Para que a matriz possua inversa, ela precisa ser quadrada e, além disso, o seu determinante tem que ser diferente de zero, caso contrário não haverá inversa. Para encontrar a matriz inversa, utilizamos a equação matricial. Leia também Matriz triangular — tipo especial de matriz quadrada Para que uma matriz possua uma inversa, ela precisa ser quadrada. Tópicos deste artigo1 - Matriz identidade2 - Como calcular a matriz inversa3 - Propriedades da matriz inversa4 - Exercícios resolvidosMatriz identidade Para compreender o que é a matriz inversa, é necessário antes conhecer a matriz identidade. Conhecemos como matriz identidade a matriz quadrada In em que todos os elementos da diagonal principal são iguais a 1 e os demais termos são iguais a 0. A matriz identidade é o elemento neutro da multiplicação entre matrizes, ou seja, dada uma matriz M de ordem n, o produto entre a matriz M e a matriz In é igual à matriz M. M In = M Não pare agora... Tem mais depois da publicidade ; Como calcular a matriz inversa Para encontrar a matriz inversa de M, é necessário resolver uma equação matricial M M-1 = In Exemplo Encontre a matriz inversa de M. Como não conhecemos a matriz inversa, vamos representar essa matriz de forma algébrica Sabemos que o produto entre essas matrizes tem que ser igual a I2 Agora vamos resolver a equação matricial É possível separar o problema em dois sistemas de equações. O primeiro usa a primeira coluna da matriz M M-1 e a primeira coluna da matriz identidade. Assim, temos que Para resolver o sistema, vamos isolar a21 na equação II e substituir na equação I. Substituindo na equação I, temos que Como encontramos o valor de a11, então encontraremos o valor de a21 Conhecendo o valor de a21 e a11, agora encontraremos o valor dos demais termos montando o segundo sistema Isolando a22 na equação III, temos que 3a12 + 1a22 = 0 a22 = – 3a12 Substituindo na equação IV 5a12 + 2a22 =1 5a12 + 2 – 3a12 = 1 5a12 – 6a12 = 1 – a12 = 1 – 1 a12 = – 1 Sabendo o valor de a12, encontraremos o valor de a22 a22 = – 3a12 a22 = – 3 – 1 a22 = 3 Agora que conhecemos todos os termos da matriz M-1, é possível representá-la Leia também Adição e subtração de matrizes Propriedades da matriz inversa Existem propriedades que resultam da definição de uma matriz inversa. 1ª propriedade a inversa da matriz M-1 é igual à matriz M. A inversa de uma matriz inversa é sempre a própria matriz, ou seja, M-1-1 = M, pois sabemos que M-1 M = In, portanto M-1 é a inversa de M e também M é a inversa de M-1. 2ª propriedade a inversa de uma matriz identidade é ela mesma I-1 = I, pois o produto da matriz identidade por ela mesma resulta na matriz identidade, ou seja, In In = In. 3ª propriedade a inversa do produto de duas matrizes é igual ao produto das inversas M×A-1 = M-1 A-1. 4ª propriedade uma matriz quadrada possui inversa se, e somente se, o seu determinante é diferente de 0, ou seja, detM ≠ 0. Exercícios resolvidos 1 Dadas a matriz A e a matriz B, sabendo que elas são inversas, então o valor de x+y é a 2. b 1. c 0. d -1. e -2. Resolução Alternativa d. Montando a equação A B = I Pela segunda coluna, igualando os termos, temos que 3x + 5y = 0 → I 2x + 4y = 1 → II Isolando x em I Substituindo na equação II, temos que Conhecendo o valor de y, encontraremos o valor de x Agora calcularemos x + y Questão 2 Uma matriz só possui inversa quando o seu determinante é diferente de 0. Analisando a matriz abaixo, quais são valores de x que fazem com que a matriz não admita inversa? a 0 e 1. b 1 e 2. c 2 e – 1. d 3 e 0. e – 3 e – 2. Resolução Alternativa b. Calculando o determinante de A, queremos os valores em que detA = 0. detA = x x – 3 – 1 – 2 detA = x² – 3x + 2 detA = x² – 3x + 2 = 0 Resolvendo a equação do 2º grau, temos que a = 1 b = – 3 c = 2 Δ = b² – 4ac Δ = – 3 ² – 412 Δ= 9 – 8 Δ = 1 Por Raul Rodrigues de Oliveira Professor de Matemática
Contoh1. Himpunan bilangan bulat Z (berasal dari bahasa Jerman yang berarti Zahlen), himpunan bilangan rasional Q (quotient), dan himpunan bilangan real R semuanya merupakan grup dengan operasi penjumlahan biasa. Identitas dari masing-masing grup tersebut adalah 0 dan invers dari a adalah -a. Contoh 2.